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Outline

• Review last lecture

• General vector spaces

• Inner products as generalization of dot 
products

• Norms as generalization of vector 
length

• Linear independence and basis sets

• Introduction to solutions of simultaneous 
equations
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Review

• Vectors can be represented by 
components in terms of a basis set

• Dot product of two vectors: sum of prod-
uct of components (orthogonal basis)

• Matrix basics: definition, equality, addi-
tion, multiplication, transpose, inverse

• Determinants evaluation of small sizes 
and general equation
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Review Matrix Multiplication
• For matrix multiplication, C = BA

– B has n rows and p columns
– A has p rows and m columns
– C has n rows and m columns ),1;,1(
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• B is left matrix and A is right matrix
• In general AB ≠ BA
• Component cij in product matrix is 

product of row i components in left 
matrix with column j components in right 
matrix
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Review Determinants
• Looks like a matrix but isn’t a matrix
• Use |  |  instead of [   ] for borders
• A square array of numbers with a rule 

for computing a single value for the 
array
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Review General Determinants
• Evaluate determinant by any equation

• Mij, is size (n-1) determinant found by 
removing row i and column j from A
• Mij is minor determinant; Cij is cofactor

• Can pick any row or any column
• Choose row or column with several zeros
• Numerical determinants found more 

efficiently by Gaussian elimination
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Review Inverse of a Matrix

• For square matrix, A, the inverse, A-1, if it 
exists, gives AA-1 = A-1A = I

• Find the components of B = A-1, bij, from 
determinant of A and its cofactors
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• Use this formula to get algebraic 
equations for components of inverse 
matrix not for numerical analysis
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Vector Spaces
• In mechanics a vector is a physical 

quantity with magnitude and direction 
expressed as two or three components

• General vectors have n components and 
may not represent a physical quantity

• Vector spaces have simple rules which 
focus on representing all vectors in the 
space by a set of basis vectors

• This is a unifying concept for many of the 
topics covered in ME 501AB
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Rules for Vector Spaces
• Vector spaces have simple rules to 

allow many examples of vectors
• If x and y are vectors in the space then 

x + y is also a vector in the space.
• The addition operation is commutative 

and associative.  That is, x + y = y + x 
and x + y + z = (x + y) + z = x + (y + z).

• The space contains a null element, 0, 
such that x + 0 = 0 + x = x.
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More Simple Rules
• For each vector, x, in the space there 

is another vector, –x, such that x + (–x) 
= 0

• Vectors can be multiplied by scalars.
• Scalars (and vector components) may 

be real or complex
• Complex numbers use i where i2 = –1 
• For complex scalars, ||2 = *, where 
* = u – iv = re-i is the complex 
conjugate of  = u + iv = rei
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Multiplication by Scalars
x and y are vectors in the space and 

and  are (real or complex) scalars
x, x, y, and y are all vectors in the 

space
(x = x + x
(y = y + y
x = (x = (x)
(x y = x + y
1x = x
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Vector Norms
• Norm of a vector, x, expressed as ||x||,
• Measure of the size of the vector.  
• Generalization of the usual definition of 

vector length
• Any definition must satisfy

– ||x|| = || ||x||   (If complex, ||2 = *)
– ||x|| > 0 if x  0
– ||x|| = 0 if x = 0
– ||x + y||  ||x|| + ||y||
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The q Norm

• Generalizes notion of vector length

• Vector length is the “two norm”, ||x||2
• Other common norms 

– one norm: sum of absolute values 

– infinity norm: the element with maximum 
absolute value.

  qq

iq
x

1

xDefinition:
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From Dot to Inner Products

• Inner product generalizes vector dot 
product 

• Inner product notation (x,y)
• Inner products satisfy the following

– (xy = (yx

– (x + yz = (x z(yz
– (xx = 0 if and only if x = 0
– (xx > 0 unless x = 0
– (x y = (xy
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Inner Product Definitions
• For two conventional real vectors, [x1 x2

x3 … xn] and [y1 y2 y3 … yn], the 
inner product is xiyi

• For two column vectors, x and y, we 
can express the inner product as xTy

• For two row vectors, x and y, we can 
express the inner product as xyT

• We can also define inner products as 
integrals of two functions
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Linear Combinations

• We can form linear combinations of any 
number, k, vectors in the space.  The 
linear combination is defined in terms of 
a set of k scalars, 1, 2, …, k, such 
that our linear combination is given by 
the equation 
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Notation: x(i) is one vector in a set of 
vectors, not a vector component like xi
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Linear Dependence
• A set of vectors linearly dependent if 

the following equation holds, where at 
least one of the i is not equal to zero.

• If one of the αi ≠ 0 we can divide by that 
α (say α1) and get a dependent equation
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Linear Independence

• A set of vectors that is not linearly 
dependent is said to be linearly 
independent

• In a linearly independent set of vectors, 
we cannot do this

• Next slides consider examples of sets of 
vectors that linearly independent and 
linearly dependent
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Linear (In)dependence in 3D
• Consider usual unit vectors

– i = [1   0   0], j = [0  1   0], and k = [0   0   1] 
– 1i + 2j + 3k =  [1 2 3] 
– [1 2 3] = 0 = [0   0   0] only if 1 = 2 = 3

= 0
– Thus, as expected, these three vectors are 

linearly independent

• Replace i by m = [1   1   1], giving the set
– m = [1   1   1], j = [0  1   0], and k = [0   0   1] 
– 1m + 2j + 3k =  [1 1+2 1+3] 
– How can [1 1+2 1+3] = 0 = [0   0   0]?

20

Linear (In)dependence in 3D II
• 1m + 2j + 3k = 0 = [0   0   0], only if 
1 = 2 = 3 = 0
– Thus m, j, and k are linearly independent

• Another set: m = [1   1   1], j = [0  1   0], 
and p = [1   0   1]
– 1m + 2j + 3p =1[1   1   1] + 2[0  1   0] 

+ 3[1   0   1] = [1+3 1+2 1+3] 
– [1+3 1+2 1+3] = [0  0  0] if 1 = c 2 = 
3 = -c 

– m,  j, and p are not linearly independent 
because m - j - p = 0 (1 = 1 2 = 3 = -1)

21

n-dimensional vector space
• Has a set of n linearly independent 

vectors
• Has no sets of n+1 (or more) linearly 

independent vectors 
• Any vector in an n-dimensional space 

can be represented by a linearly 
independent combination of n vectors.

• A set of n linearly independent vectors 
is called a basis set and is said to span 
the space

22

Orthogonal Vectors

• Two vectors whose inner product equals 
zero are orthogonal.

• I. e., x and y are orthogonal if (x, y) = 0.

• n vectors, e(1), e(2), … , e(n), are mutually 
orthogonal if the inner product of any 
unlike pair of vectors vanishes

• I. e., if (e(i), e(j)) = 0 for any i and j (i  j), 
the set of vectors is orthogonal

• Orthogonal vectors linearly independent

23

Orthonormal Vectors

• For orthonormal vectors, e(1), e(2), … , 
e(n), the inner product of any unlike pair 
of vectors is zero and the inner product 
of like vectors is one.  

• Orthonormal set: (e(i), e(j)) = ij

• In mechanics we use e(1),= i, e(2),= j, 
and e(3),= k as an orthonormal set; we 
know that (e(i), e(j)) = ij for this set  

௜௝ߜ ൌ ቊ
0	݅ ് ݆
1	݅ ൌ ݆Kronecker delta
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Orthogonal to Orthonormal

• For an orthogonal set (b(i), b(j)) = aiij
where ai = (b(i), b(i))

• For an orthonormal set, (e(i), e(j)) = ij

• To convert an orthogonal set, b(i) to an 
orthonormal set divide b(i) by (b(i), b(i))
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Functions in Vector Spaces
• Functions such as sin(nx/L) form a 

vector space in the region 0  x  L.
• The inner product, defined below, shows 

that this is a set of orthogonal functions

 
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nm
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L
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L

xn

0 2
sinsin 

• The set of functions at 
the right is orthonormal









L

xn

L


sin

2

• Weight function sometimes used
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Simultaneous Equations

• The second column is an equivalent set 
of equations that is a linear combination 
of the equations in the first column
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Two Basic Ideas

• A set of simultaneous linear algebraic 
equations may have
– A single (unique) solution
– No solution
– An infinite number of solutions

• A linear combination of any two 
equations can replace one of the 
equations and not change the solution

28

Getting to a Matrix Form

• Example of 3 equations (3 unknowns)
3x + 7y – 3z = 8
2x – 4y +  z = -3
8x + 6y – 2z = 14

• How can we develop a general notation 
for N equations in N unknowns?
– Call variables x1, x2, x3 etc.
– Call right hand side b1, b2, b3, etc.
– Call top row coefficients a11, a12, a13, etc.

· Coefficient of xm in equation k is akm

29

Standard Form

a11x1 + a12x2 + a13x3 +...+ a1N-1xN-1 + a1NxN = b1

a21x1 + a22x2 + a23x3 +...+ a2N-1xN-1 + a2NxN = b2

a31x1 + a32x2 + a33x3 +...+ a3N-1xN-1 + a3NxN = b3
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
aN-1,1x1 + aN-1,2x2 + .. ... ... ... ...+  aN-1,NxN = bN-1
aN1x1 + aN2x2 + aN3x3 +... ... ... ... ..+ aNNxN = bN

• Usual subscripts on a are arow,column

• Row is equation and column is unknown, xk

• N can be any number
30

Compact Standard Forms

• Equations defined by data: N, aij, and bi

• aij coefficients are a matrix, A
– Use negative numbers for aij in place of 

subtraction

• Right-hand side, b, and unknowns, x, 
are column vectors (xj1, bi1)

• Summation is just usual matrix 
multiplication formula

Nibxa
N

j
ijij ,,1

1




• Ax = b
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Example in Standard Form

• Previous example of 3 equations (N = 3)
3x + 7y – 3z = 8

2x – 4y +  z = -3

8x + 6y – 2z = 14

• In standard form:
– x is  x1, y is x2, and z is x3

– a11 = 3, a12 = 7, a13 = -3, b1, = 8

– a21 = 2, a22 = -4, a23 = 1, b2, = -3

– a31 = 8, a32 = 6, a33 = -2, b3, = 14
32

Example in Standard Form

• As Ax = b
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3x + 7y – 3z =   8

2x – 4y +   z =  -3

8x + 6y – 2z = 14

• Previous 
example of N 
= 3 equations
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Solving Ax = b
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• Know A (all the aij) and b (all bi)

• Want x (all the unknowns xi)
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General System for Ax = b
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n equations and m unknowns?

• How can this be?  We expect m = n

• First we have to see if the n equations 
are really independent equations

• Systems for m > n have an infinite 
number of solutions

• Systems for n > m can be solved in a 
least squares sense
– Provide solution that has least error in 

inner product (Ax – b, Ax – b)
36

Gauss Elimination

• Practical tool for obtaining solutions

• Analytical tool for determining linear 
dependence or independence

• Basic idea is to manipulate the 
equations (or data) to make them easier 
to solve without changing the results

• Systematically create zeros in lower left 
part of the equations (or data)
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Upper Triangular Form
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• Convert original set of equations to
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Gauss Elimination III
• Upper triangular form on previous slide 

is easily solved by back substitution
• xn = n/nn

• xn-1= (n-1 – n-1 nxn)/n-1 n-1, et cetera
• General equation for back substitution
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Quick Example

Matrix form: 
Ax = b 
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3x + 7y – 3z =   8

2x – 4y +   z =  -3

8x + 6y – 2z = 14
N = 3 equations

Subtract (2/3) Row 1 from Row 2
Subtract (8/3) Row 1 from Row 3
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Quick Example II
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38
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3
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0
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x

x

x
Subtract 
(38/26) times 
Row 2 from 
Row 3 

Quick Example III

41




















































































































3

25

3
26
3
38

3

22

3

25
8

3

3
26
3
38

6
3

26

3
26
3
38

3

38
0

3
3

26
0

373

3

2

1

x

x

x


































































13

63
3

25
8

13

21
00

3
3

26
0

373

3

2

1

x

x

x

Quick Example IV
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
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ଷݔ ൌ
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13ൗ
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ൌ 3

ଶݔ ൌ
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3ൗ െ 3 3
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ൌ
െ52

3ൗ
െ26

3ൗ
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ଵݔ ൌ
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3
ൌ
3
3
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