Vector Spaces and Introduction to Simultaneous Linear Equations

Vector Spaces and Introduction to Simultaneous Linear Equations

> Larry Caretto Mechanical Engineering 501A **Seminar in Engineering Analysis** September 6, 2017

Northridge

Outline

- Review last lecture
- General vector spaces
- Inner products as generalization of dot products
- Norms as generalization of vector length
- Linear independence and basis sets
- 2 • Introduction to solutions of simultaneous equations

Northridge

Review

- Vectors can be represented by components in terms of a basis set
- Dot product of two vectors: sum of product of components (orthogonal basis)
- Matrix basics: definition, equality, addition, multiplication, transpose, inverse
- Determinants evaluation of small sizes and general equation

3

Northridge

- For square matrix, **A**, the inverse, **A**-1, if it exists, gives **AA**-1 = **A**-1**A** = **I**
- Find the components of $\mathbf{B} = \mathbf{A}^{-1}$, \mathbf{b}_{ii} , from determinant of **A** and its cofactors *M*

$$
If \mathbf{B} = \mathbf{A}^{-1}, \qquad b_{ij} = \frac{C_{ji}}{Det(\mathbf{A})} = (-1)^{i+j} \frac{M_{ji}}{Det(\mathbf{A})}
$$

• Use this formula to get algebraic equations for components of inverse matrix not for numerical analysis

7

Northridge

14

$$
-\alpha_1 \mathbf{m} + \alpha_2 \mathbf{j} + \alpha_3 \mathbf{k} = [\alpha_1 \alpha_1 + \alpha_2 \alpha_1 + \alpha_3]
$$

= How can [α, α + α, α + α] = 0 = [0, 0, 0]²

$$
\frac{\text{Cubic} \cdot \text{Cubic} \cdot \text{Cyclic}
$$

n-dimensional vector space

- Has a set of n linearly independent vectors
- Has no sets of n+1 (or more) linearly independent vectors
- Any vector in an n-dimensional space can be represented by a linearly independent combination of n vectors.
- 21 • A set of n linearly independent vectors is called a **basis set** and is said to **span the space**

Northridge

Orthogonal Vectors • Two vectors whose inner product equals zero are *orthogonal*.

- *I. e.*, **x** and **y** are orthogonal if $(x, y) = 0$.
- n vectors, $\mathbf{e}_{(1)}$, $\mathbf{e}_{(2)}$, ..., $\mathbf{e}_{(n)}$, are mutually orthogonal if the inner product of any unlike pair of vectors vanishes
- *I. e.*, if $(e_{(i)}, e_{(i)}) = 0$ for any i and j $(i \neq j)$, the set of vectors is orthogonal
- Orthogonal vectors linearly independent 22 **Northridge**

Orthonormal Vectors

- For **orthonormal** vectors, $e_{(1)}$, $e_{(2)}$, ..., **e**_(n), the inner product of any unlike pair of vectors is zero and the inner product of like vectors is one.
- Orthonormal set: $(\mathbf{e}_{(i)}, \mathbf{e}_{(j)}) = \delta_{ij}$
- In mechanics we use $e_{(1)} = i$, $e_{(2)} = j$, and $\mathbf{e}_{(3)}$, = **k** as an orthonormal set; we know that $(\mathbf{e}_{(i)}, \mathbf{e}_{(i)}) = \delta_{ij}$ for this set

23

Northridge

