Vector Spaces and Introduction to Simultaneous Linear Equations

Larry Caretto Mechanical Engineering 501A Seminar in Engineering Analysis September 6, 2017

California State University Northridge

Outline

- Review last lecture
- · General vector spaces
- Inner products as generalization of dot products
- Norms as generalization of vector length
- Linear independence and basis sets
- Introduction to solutions of simultaneous
 equations
 guide (operaty

Northridge

Review

- Vectors can be represented by components in terms of a basis set
- Dot product of two vectors: sum of product of components (orthogonal basis)
- Matrix basics: definition, equality, addition, multiplication, transpose, inverse
- Determinants evaluation of small sizes and general equation

3

California State University Northridge

- For square matrix, **A**, the inverse, **A**⁻¹, if it exists, gives $AA^{-1} = A^{-1}A = I$
- Find the components of $\mathbf{B} = \mathbf{A}^{-1}$, \mathbf{b}_{ii} , from determinant of A and its cofactors $\frac{C_{ji}}{Det(\mathbf{A})} = (-1)^{i+j} \frac{M_{ji}}{Det(\mathbf{A})}$

If
$$\mathbf{B} = \mathbf{A}^{-1}$$
, $b_{ij} = -\frac{1}{I}$

Northridge

7

16

n-dimensional vector space

- Has a set of n linearly independent vectors
- Has no sets of n+1 (or more) linearly independent vectors
- Any vector in an n-dimensional space can be represented by a linearly independent combination of n vectors.
- A set of n linearly independent vectors is called a **basis set** and is said to **span** the space
 Content State (Internet)

California State University Northridge

Orthogonal Vectors Two vectors whose inner product equals zero are *orthogonal*.

- *l. e.*, **x** and **y** are orthogonal if (**x**, **y**) = 0.
- n vectors, e₍₁₎, e₍₂₎, ..., e_(n), are mutually orthogonal if the inner product of any unlike pair of vectors vanishes
- *I.* e., if (**e**_(i), **e**_(j)) = 0 for any i and j (i ≠ j), the set of vectors is orthogonal
- Orthogonal vectors linearly independent
 Northridge
 22

Orthonormal Vectors

- For *orthonormal* vectors, $\mathbf{e}_{(1)}, \mathbf{e}_{(2)}, \ldots$, $\mathbf{e}_{(n)}$, the inner product of any unlike pair of vectors is zero and the inner product of like vectors is one.
- Orthonormal set: $(\mathbf{e}_{(i)}, \mathbf{e}_{(j)}) = \delta_{ij}$
- In mechanics we use $\mathbf{e}_{(1)} = \mathbf{i}$, $\mathbf{e}_{(2)} = \mathbf{j}$, and $\mathbf{e}_{(3)} = \mathbf{k}$ as an orthonormal set; we know that $(\mathbf{e}_{(i)}, \mathbf{e}_{(j)}) = \delta_{ij}$ for this set

Simultaneous Equations									
• The second column is an equivalent set of equations that is a linear combination of the equations in the first column									
$3x_1 + 5x_2 = 13$	$3x_1 + 5x_2 = 13$	$x_1 = 1$							
$6x_1 + 11x_2 = 28$	$x_2 = 2$	$x_2 = 2$							
$3x_1 + 5x_2 = 13$	$3x_1 + 5x_2 = 13$	$x_1 = a (any \ a)$							
$6x_1 + 10x_2 = 26$	0 = 0	$x_2 = \frac{15 - 5a}{5}$							
$3x_1 + 5x_2 = 13$	$3x_1 + 5x_2 = 13$	No solution							
$6x_1 + 10x_2 = 25$	0 = -1	110 501111011							
California State University Northridge		26							

General System for Ax = b									
		(n x m)			(m x 1) (n x 1)				
$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \end{bmatrix}$	$a_{12} \\ a_{22} \\ a_{32} \\ \vdots$	$a_{13} \\ a_{23} \\ a_{33} \\ \vdots$	···· ··· ··· ·.	 	$egin{array}{c} a_{1m} \ a_{2m} \ a_{3m} \ dots \end{array}$	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \end{bmatrix}$	$= \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{bmatrix}$		
California State	: a _{n2}	: <i>a</i> _{n3}		•. 	: a _{nm}	$\begin{bmatrix} \vdots \\ x_m \end{bmatrix}$	$\begin{bmatrix} \vdots \\ b_n \end{bmatrix}$	34	

Northridge

Gauss Elimination · Practical tool for obtaining solutions Analytical tool for determining linear dependence or independence · Basic idea is to manipulate the equations (or data) to make them easier to solve without changing the results · Systematically create zeros in lower left part of the equations (or data) Northridge 36

