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* Review last lecture
» General vector spaces

* Inner products as generalization of dot
products

* Norms as generalization of vector
length

+ Linear independence and basis sets
* Introduction to solutions of simultaneous

Review

* Vectors can be represented by
components in terms of a basis set

+ Dot product of two vectors: sum of prod-
uct of components (orthogonal basis)

» Matrix basics: definition, equality, addi-
tion, multiplication, transpose, inverse

» Determinants evaluation of small sizes
and general equation

Califoerin State Lniversty
Northridge

Review Matrix Multiplication

» For matrix multiplication, C=BA
—B has nrows and p columns  C; = Zbikakj
— A has p rows and m columns k=1
— C has n rows and m columns (i=1n;j=1,m)

B is left matrix and A is right matrix

In general AB # BA

Component c; in product matrix is
product of row i components in left
matrix with column j components in right
matrix

Califoerin State Lniversty
Northridge

Review Determinants

* Looks like a matrix but isn’t a matrix
* Use| | instead of [ ] for borders
* A square array of numbers with a rule
for computing a single value for the
array
8, B Q3| (B A, By
Det|:a11 a12:| Detla, a, a;|=|a, &, ay
aZl a‘22 a31 a32 a33 a‘31 a32 a33
= a11a22 - a12a21 — a’lla22a33 + a21a32a'13 + a31a12a23
8448583 ~ 8815853 — 8318583
Northridge °
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Review General Determinants

+ Evaluate determinant by any equation
DetAg,p =2 (-0 a;My =3 (- My = 3 a,C; =3 a,C;
i=1 j=1 i=1 j=1

* M, is size (n-1) determinant found by
removing row i and column j from A
* M; is minor determinant; C; is cofactor
+ Can pick any row or any column
» Choose row or column with several zeros
* Numerical determinants found more

efficiently by Gaussian elimination
Northridge
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Review Inverse of a Matrix

 For square matrix, A, the inverse, A, if it
exists, gives AA1 = ATA = |

» Find the components of B = A, by, from
determinant of A and its cofactors
-1 CJ'i i+j M ji
If B=A", bj=—r— =(-D"— =
Det(A) Det(A)

» Use this formula to get algebraic
equations for components of inverse
matrix not for numerical analysis

Califoeniin State Uniyersity
Northridge

Vector Spaces

+ In mechanics a vector is a physical
quantity with magnitude and direction
expressed as two or three components

» General vectors have n components and
may not represent a physical quantity

+ Vector spaces have simple rules which
focus on representing all vectors in the
space by a set of basis vectors

+ This is a unifying concept for many of the
topics covered in ME 501AB

Californin State I‘:lum'- 8
Northridge

Rules for Vector Spaces

* Vector spaces have simple rules to
allow many examples of vectors

+ If x and y are vectors in the space then
X +y is also a vector in the space.

* The addition operation is commutative
and associative. Thatis,x +y =y + X
andx+y+z=(x+y)+z=x+(y+2).

» The space contains a null element, O,
suchthatx +0=0+x =x.

Califoeniin State Uniyersity
Northridge

More Simple Rules

* For each vector, X, in the space there
is another vector, —x, such that x + (—x)
=0

* Vectors can be multiplied by scalars.

* Scalars (and vector components) may
be real or complex

» Complex numbers use i where i2 = —1

« For complex scalars, |a/? = a*a, where
o* = u—iv =re'? is the complex
conjugate of a. = u + iv = re®

Califoeniin State Uniyersity
Northridge

Multiplication by Scalars

x and y are vectors in the space and a
and 3 are (real or complex) scalars

aX, Bx, ay, and By are all vectors in the
space

(o + B)x = ax + Bx

(o + Py =ay + By

apx = (ap)x = a(px)

a(X +y) = ox + ay

X =x

Califoeniin State Uniyersity
Northridge

Vector Norms

ME 501A Engineering Analysis

* Norm of a vector, x, expressed as ||X||,
» Measure of the size of the vector.
» Generalization of the usual definition of
vector length
* Any definition must satisfy
— lox|| = fatf [Ix]| (I complex, |a? = a*at)
— x| >0ifx =0
— |x]|=0ifx=0
= Ax+ylE< x|+ iyl

Califoeniin State Uniyersity
Northridge

Page 2



Vector Spaces and Introduction to
Simultaneous Linear Equations

September 6, 2017

The g Norm

Definition: HXHq — I:Z‘Xi‘q]%

» Generalizes notion of vector length
* Vector length is the “two norm”, [|x]|,
» Other common norms

—one norm: sum of absolute values

— infinity norm: the element with maximum
absolute value.

Calsforrin State Linhversicy
Northridge

From Dot to Inner Products

* Inner product generalizes vector dot
product

* Inner product notation (x,y)

* Inner products satisfy the following
—(xy) =y, %)

ax + By, z) = a(x , 2) + B(y, 2)

X,X)=0ifandonlyifx =0

X,X)>0unlessx =0

X, By) = B*(X,y)

—~ o~ o~ —~

Calsforrin State Linhversicy
Northridge

Inner Product Definitions

* For two conventional real vectors, [x; X,

X3 ...XJand [y, ¥, Y53 ...V, the
inner product is 2xy,

» For two column vectors, x and y, we
can express the inner product as xTy

» For two row vectors, x and y, we can
express the inner product as xyT

* We can also define inner products as
integrals of two functions

Califoerin State Lniversty
Northridge

Linear Combinations

» We can form linear combinations of any
number, k, vectors in the space. The
linear combination is defined in terms of
a set of k scalars, o, a,, ..., o, such
that our linear combination is given by
the equation

k
A X gy + X )+ F XXy = Z X

i=1
Notation: X, is one vector in a set of
vectors, not a vector component like x;

Califoerin State Lniversty
Northridge

Linear Dependence

» Aset of vectors linearly dependent if
the following equation holds, where at
least one of the o is not equal to zero.

k
X gy + X )+ XXy = Zaix(i) =0
i=1

« If one of the a; # 0 we can divide by that
a (say a4) and get a dependent equation

_|“ a3 ay
A Vo o W

Calsornin State nhversity 17
Northridge

Linear Independence

ME 501A Engineering Analysis

» A set of vectors that is not linearly
dependent is said to be linearly
independent

* In a linearly independent set of vectors,
we cannot do this
* Next slides consider examples of sets of

vectors that linearly independent and
linearly dependent

Califoerin State Lniversty
Northridge
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Linear (In)dependence in 3D

» Consider usual unit vectors
—i=[ 0 0],j=[0 1 0],andk=[0 0 1]
— ol Fogl tagk = [oy oy o]
—[oq a, a3]=0=[0 0 OJonlyifay =0, =0,

— Thus, as expected, these three vectors are
linearly independent
* Replaceibym=[1 1 1], giving the set
-m=[1 1 1],j=[01 0,andk=[0 0 1]
— oM + ayj + ogk = [oy aqto, oqtag)

csuiOW.CaN [oy oyt aytaz] =0=[0 0 0]7,
Northridge

Linear (In)dependence in 3D |l

s oam+oay +azk=0=[0 0 O], onlyif
oy =0,=053=0
—Thus m, j, and k are linearly independent

* Anotherset: m=[1 1 1],j=[0 1 0],
andp=[1 0 1]
— oM+ oy +agp =oy[1 1 1]+ ay[0 1 O]

+og[1 0 1] =[oy+oy oqto, aqtog]

—[oy+og oqtay aqtos] =[0 0 Olifay =cay, =

o5 =-C
—m, j, and p are not linearly independent

. pecausem-j-p=0(a;=10,=0a5=-1)

Northridge ®

n-dimensional vector space

* Has a set of n linearly independent
vectors

» Has no sets of n+1 (or more) linearly
independent vectors

* Any vector in an n-dimensional space
can be represented by a linearly
independent combination of n vectors.

» A set of n linearly independent vectors
is called a basis set and is said to span
the space

Californin State I‘:lum'- 21
Northridge

Orthogonal Vectors

» Two vectors whose inner product equals
zero are orthogonal.

* |. e, x and y are orthogonal if (x, y) = 0.

* nvectors, e, €, ... , €, are mutually
orthogonal if the inner product of any
unlike pair of vectors vanishes

* l.e,if(e;, e,)=0foranyiandj(i=j),
the set of vectors is orthogonal

+ Orthogonal vectors linearly independent

Californin State I‘:lum'- 22
Northridge

Orthonormal Vectors

« For orthonormal vectors, ey, €, --- ,
€ the inner product of any unlike pair
of vectors is zero and the inner product
of like vectors is one.

+ Orthonormal set: (e, ;) = ;

* In mechanics we use e;,= i, €)=,
and e,,= k as an orthonormal set; we
know that (e, ;) = §; for this set

01

Kronecker delta 6;; = 1 ' _J.

L=]

Californin State I‘:lum'- 23
Northridge

Orthogonal to Orthonormal

* For an orthogonal set (b, b)) = ag;
where a;= (b, b))

« For an orthonormal set, (e, ;) = §;

» To convert an orthogonal set, b, to an

I
orthonormal set divide b, by (b, b)"
e = 0]
0 b(l)‘b(l)

0 by | (bg).by)) s

b

Northridge

)| »-
o (VBo:bo) b)) oy by Ny b))

24
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Functions in Vector Spaces

* Functions such as sin(nnx/L) form a
vector space in the region 0 < x < L.

* The inner product, defined below, shows
that this is a set of orthogonal functions

L
J‘sin[%)sin(wjdx = Lénm
° L L 2
» The set of functions at Esin[n—”xj
the right is orthonormal VL L
» Weight function sometimes used

Californ: .|N:|:|-I‘:||ur\'.- 25
Northridge

Simultaneous Equations

* The second column is an equivalent set
of equations that is a linear combination
of the equations in the first column

3% +5x%,=13 3% +5%,=13 X =1
6% +11x, =28 Xy =2 X, =2
3% +5% =13 3y 15y, —13 X%=2& (aya)
v 13-3a
6%, +10x, =26 0=0 X, = -
3% +5x,=13 3% +5x, =13 No solution

6x, +10x, =25 0=-1

Californ: .|N:|:|-I‘:||ur\'.- 26
Northridge

Two Basic Ideas

+ A set of simultaneous linear algebraic
equations may have
— A single (unique) solution
— No solution
— An infinite number of solutions

* Alinear combination of any two
equations can replace one of the
equations and not change the solution

Californ: .|N:|:|-I‘:||ur\'.- 27
Northridge

Getting to a Matrix Form

+ Example of 3 equations (3 unknowns)
3x+7y—-3z=8
2x—-4y+ z=-3
8x+6y—-2z=14
» How can we develop a general notation
for N equations in N unknowns?
— Call variables x;, x,, X3 etc.
— Call right hand side b, b,, b, etc.
— Call top row coefficients a4, a,,, a43, etc.
- Coefficient of x;,, in equation k is a,

Californ: .|N:|:|-I‘:||ur\'.- 28
Northridge

Standard Form

ApXy + ApXy + A1aXg +ot Ay Xy + AXy = by
Ap1Xq + AypXy + pgXg F.F Aoy Xy F AgXy = by
Ag1Xq + AgpXy + AgaXg t..F Agn Xyt AgXy = by
aN_1‘1X1 + aN_12X2 + .t aN_»]YNXN = bN-1
aN1X1 + aN2X2 + aN3X3 +||| e wes s ||+ aNNXN = bN

* Usual subscripts on a are a4, co/umn

* Row is equation and column is unknown, X,

* N can be any number

Californ: .|N:|:|-I‘:||ur\'.- 29
Northridge

Compact Standard Forms

ME 501A Engineering Analysis

=b i=1..,N

J

N
« Ax=hb D ayx
1

* Equations defined by data: N, a;, and b;

* a; coefficients are a matrix, A
— Use negative numbers for a; in place of

subtraction

* Right-hand side, b, and unknowns, x,
are column vectors (x;;, by)

» Summation is just usual matrix
multiplication formula

Californ: .|N:|:|-I‘:||ur\'.- 30
Northridge
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Example in Standard Form

Example in Standard Form

» Previous example of 3 equations (N = 3)
3x+7y—-3z2=8
2x—4y+ z=-3
8x + 6y —2z=14

* In standard form:
—XiS Xq, YisS Xy, and z is X3
—-ay=3,a,=7,a,3=-3,b;,=8
—ay=2,ap=-4,a5=1,b,,=-3
—a3,=8,a3,=6,a33=-2, by, =14

Californin State I‘:lum'- 31
Northridge

« Previous 3x+7y-3z= 8
example of N 2x—-4y+ z= -3
= 3 equations 8x + By — 2z =14
3 7 =3 8
* AsAx=b 2 -4 1|x|=|-3
8 6 -2|x 14

Californin State I‘:lum'- 32
Northridge

Solving Ax = b

General System for AXx = b

* Know A (all the a;) and b (all b;)
. Want x (all the unknowns x;)

Ay Ay A3 ot Ay || X by
Qr 8y Ay ot A || X b,
Ay Ap Ay vt Ay || X | Dby

_.am. V..ﬁa.pz., Ay e ann_ _Xn_ _bn_
Northridge

(n xm) (mx1) (nx1)
. Ix ]
ap &, a5 ayp X b,
2
Ay Ap Ay Qm X b,
3
a3l a32 a33 a3m : — b3
_anl A, Qo Ay i : _bn _
_Xm .

Californin State I‘:lum'- 34
Northridge

n equations and m unknowns?

Gauss Elimination

* How can this be? We expectm =n

+ First we have to see if the n equations
are really independent equations

» Systems for m > n have an infinite
number of solutions

« Systems for n > m can be solved in a
least squares sense
— Provide solution that has least error in
inner product (Ax — b, Ax —b)

Californin State I‘:lum'- 35
Northridge

Practical tool for obtaining solutions

Analytical tool for determining linear

dependence or independence

+ Basic idea is to manipulate the
equations (or data) to make them easier
to solve without changing the results

» Systematically create zeros in lower left

part of the equations (or data)

Californin State I‘:lum'- 36
Northridge
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Upper Triangular Form Gauss Elimination l|
« Convert original set of equations to  Upper triangular form on previous slide
r My 1 T e is easily solved by back substitution
all alZ 0513 aln—l alrl Xl ﬁl o x = B /Q
0 a a e e a a X n n nn
0 52 z an-t 2n 2 lBZ * Xp= (Bn-1 — Opq nxn)/an-1 n-1s et cetera
D I B ﬁ;" + General equation for back substitution
: : Bi— Za“ X
0 0 0 0 Qn_1n1 %n || %o ﬂn—l X; = % i=n-1n-2,..1
[0 0 0 - - 0 anlx | |8 | !
Northridge ¥ Northridge *

Quick Example Quick Example Il
3x+7y—-3z i 8 3 . 3 . 8
N = 3 equations 2X—4y+ z=-3 2%3 74%7 1%(73) X, |= —3—%8
Bx+6y-22=14 8-83 6-87 2803 %) 1148
3 7 =3|x 8 8 8 8 8
Matrixform: |2 -4 1|x,|=|-3 Subtract
AX =b o ¥[x] | B (38/26) times
8 6 -2|x 14 0 -5 3% |=|-5| Row2from
Subtract (2/3) Row 1 from Row 2 o .38 o Ix] | 22/ Row3
Subtract (8/3) Row 1 from Row 3 3 3
Northridge ® Northridge ©
Quick Example Il Quick Example IV
] [ 37 -3y 8 63
0 ,E 3| x,|= ,é X3 = ﬁ P 3
3 7 -3y, 8 3 . 3 21/
0 ,@ 3 X }_ ,§ 0 0 é ° @ 13
3 2 3 13 13
38 38 || % 38 — —
S e (I AT () 23/3-33) _ "%/
3 26 3) "% 3 2603 2 =726 =26, " 2
3 3 ] L 3 ] /3 /3
37 -3y 8 = 8—(-3)(3)—-(7)(2) :E: 1
0 -2 3 xz} -2 1 3 3
California Spate Linhersity 0 A % 63 California Spate Linhersity
Northridge 13] 13 “ Northridge “
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